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Abstract: Accurate measurement of Value-at-Risk (VaR) and Expected Shortfall (ES) is a 
challenge for risk managers. Extreme value theory can accurately describe the quantile of the tail of 
the distribution. In this paper, the VaR and ES are calculated by Peaks over Threshold, and their 
error analysis is given. Then the Chinese SSE fund index is taken as an example to analyze and test 
the data, and the VaR and ES values and confidence intervals of the Shanghai Stock Index are given. 
Practice has proved that the extreme value method based on POT model can predict the risk of SSE 
fund index very well. 

1. Introduction 
Since the financial asset yield series has unique statistical characteristics such as peak, thick tail, 

skewers, agglomeration and leverage effect, it is a challenging task to find a reliable model to 
evaluate its risk value [1]. In financial research, risk assessment is a measure of uncertainty that 
comes from future price changes in assets [2]. While investors also want to get more than expected 
returns, they are more concerned about the biggest losses that can be suffered, and therefore require 
a risk assessment of the investment [3]. In the risk assessment process, the risk value model is an 
important technique for quantifying specific investment risks. VaR is the maximum expected loss 
due to changes in market factors over a certain period of time and at a certain level of significance 
[4]. Accurately estimating VaR is critical for investors and financial institutions in the risk 
assessment process. However, reliable risk value modeling and forecasting are based on certain 
assumptions [5]. For example, the basic parameter VaR model assumes that financial asset returns 
follow a normal distribution and the volatility is constant [6]. However, previous studies have 
shown that the distribution of financial assets returns is different from the normal distribution, with 
the characteristics of thick tail distribution and peak state distribution. The probability of extreme 
results is greater than that under normal distribution [7]. In addition, the fluctuations in financial 
asset returns are time-varying and are characterized by volatility agglomeration and leverage [8]. 
Academia and practice use a variety of methods to predict VaR [9]. However, since the distribution 
of a typical portfolio will change over time, no single method can give a prediction that is 
satisfactory to everyone [10]. 

2. The concept of VaR and ES : 

VaR (Value-at-Risk) is a widely accepted risk measurement tool. In 2001, the Basel Committee 
designated the VaR model as a risk measurement tool for banks. It can be defined as the maximum 
loss of an asset or portfolio over a specified period of time at a certain confidence level p , or the 
quintile of the distribution function of the portfolio return loss. Assuming that X represents the 
return of a financial asset whose density function is f(x), then VaR can be expressed as: 

inf{ | ( ) (1 )}pVaR x f X x p= − ≤ > −                                               (1) 

When the density function f(x) is a continuous function it can also be written: 1( )pVaR F p−= − ,  
Where 1F −  is called a fractional function, which is defined as the inverse of the loss distribution 

f(x). The model is simple to calculate. When the portfolio loss X meets the normal distribution and 
the number of securities in the portfolio does not change, the risk of controlling the combination can 
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be relatively effective. However, the VaR model only cares about the frequency exceeding the VaR 
value, and does not care about the loss distribution exceeding the VaR  value, and the performance 
is unstable when the processing loss conforms to the non-normal distribution (such as the tail 
phenomenon) and the portfolio changes. Appears as follows: 

( ) ( ) ( )p p pVaR X Y VaR X VaR Y+ ≥ +                                               (2) 

This does not satisfy the sub-additive of the consistency risk metric model proposed by Artzner. 
( )pES (Expected shortfall)satisfies Artzner's sub-additive, homogeneity, monotonicity, and 

translation invariance conditions, and is a consistency risk measurement model. It is defined as 
follows: At a given confidence level p , let X be a random variable describing the loss of the 
portfolio, ( ) [ ]F x P X x= ≤  is its probability distribution function, make 1( ) inf{ | ( ) }F x F xα α− = ≥ , 
Then ( ) ( )ES Xα  can be expressed as: 

1 1
( ) 0

1( ) ( )
p

pES X F d
p

α α
− −= − ∫                                                    (3) 

When the density function of the loss X is continuous, ( )pES  can be simply expressed 
as: { | ( ) (1 )}pES E x F x p= − ≤ − . 

3. Extreme Value Theory 
3.1. Peaks over threshold 

Extreme value theory is a method of measuring risk loss under extreme market conditions. It has 
the ability to estimate beyond the sample data and can accurately describe the quantile of the tail of 
the distribution. It mainly includes two types of models: Block Maxima Method and Peaks over 
Threshold. 

Assuming that the distribution function of the sequence { }tz  is F(x), and ( )uF y  is defined as a 
conditional distribution function in which the random variable Z exceeds the threshold value u , it 
can be expressed as: 

( ) ( | )uF y P Z u y Z u= − ≤ >     0y ≥                                             (4) 

According to the conditional probability formula we can get:  
( ) ( ) ( ) ( )( )

1 ( ) 1 ( )
( ) ( )(1 ( )) ( )

u

u

F u y F u F z F uF y
F u F u

F z F y F u F u

+ − −
= =

− −
⇒ = − +

    z u≥                                         (5) 

Theorem 2: For a large class of distribution F (almost all common distributions) conditional 
excess distribution function ( )uF y , there is a , ( )G yξ σ′ , such that: 

1/

,
/

1 (1 ) 0
( ) ( )

1 0
u

y

y
F y G y u

e

ξ

ξ σ
σ

ξ ξ
σ

ξ

−

−

 − + ≠′≈ = → ∞
 − =

                                (6) 

When 0ξ ≥ , [0, )y∈ ∞ ; When 0ξ < , [0, ]y σ
ξ

∈ − . The distribution function , ( )G yξ σ′  is called a 

generalized Pareto distribution. 
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Fig.1. Generalized Pareto distribution when 1σ = , X takes a pattern of 0.3, 0, -0.3 

From the graph, we can see that the different values of ξ  determine the thickness of the tail. 
The larger the ξ  is, the thicker the tail is. The smaller the ξ  is, the thinner the tail is. From the 

, ( )G yξ σ′ function, we can also get the maximum value of 0ξ < , The value is σ
ξ

−  and has an upper 

bound. 
When Lee and Saltoglu use EVT directly in the time series of financial asset returns, the 

determined ξ  must be greater than zero due to the spikes in the sequence, but in our model, we 
perform extreme analysis on the residual sequence. So the ξ  we get is not necessarily greater than 
zero. 

We can get the probability density function , ( )g yξ σ′  of the generalized Pareto distribution.  
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So for a given sample 1{ , , }nz z , Log likelihood function ( , | )L zξ σ  It can be expressed as: 

1

1

1ln (1 ) ln(1 ) 0
( , | )
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3.2. Estimation method of VaR and es confidence intervals of sequence tz  

In general, the estimation method of the parameter confidence interval can be obtained from the 
idea of the Likelihood Ratio Test in the case of a large sample. The likelihood ratio test is used to 
test the degree of fitting of two models of the same type. The likelihood ratios of two models of the 
same type are consistent with the 2χ  distribution, Its degree of freedom is equal to the number of 
newly added parameters in the complex model. Take the POT model as an example, To estimate the 
confidence intervals for the parameters ξ  and σ  at a given confidence level σ  can be obtained 
by: 

2
,2

1ˆ ˆ( , ) ( , )
2

L L αξ σ ξ σ χ> −                                                         (9) 

Among them, ξ and σ  is the estimated optimal value, ( , )L x y  r σ epresents the likelihood 
function. So we get the joint confidence interval between ξ  and. If we want to get an estimate of 

pVaR , Then max ( , )( ) pL VaR
pL VaR x

x= , The confidence interval of pVaR  can be obtained by: 

2
,1

1ˆ ˆ( ) ( , )
2pL VaR L aξ σ χ> −                                                      (10) 

However, the amount of extreme data that exceeds the threshold is not much, making the gradual 
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effect of this estimate may be poor. To this end, we introduce the Bootstrap method to obtain an 

estimate of the confidence interval. Since the sequences { }tz  we obtained are independently and 
identically distributed, we can extract N points from each time to form a new sequence. Using this 
sequence to estimate pVaR  and pES , repeat this operation, you can get a series of pVaR  and pES  
estimates, find the empirical distribution of pVaR  and pES , and finally get the confidence intervals 
of pVaR  and pES  according to the empirical distribution, and put pVaR  and pES  The expected 
value of B is taken as an estimate of pVaR  and pES . Here we only give the method of finding the 

pVaR  confidence interval in the POT model. The confidence intervals of other parameters can be 
similarly obtained. This method is also a method to test the stability of the model while determining 
the confidence interval. 

4. Empirical Analysis of POT Model 
We use the daily income composite index P published by the Shanghai Stock Exchange as the 

raw data. The sample space is from March 12, 2000 to November 20, 2014. The sample size is 3391 
(using Eviews and Matlab software).  

Based on the POT model in extreme value theory, we need to use a sufficiently large threshold 
u to fit the GPD of the overrun distribution. When we give a threshold of 0.8, 0.9, we use the 
maximum likelihood estimation to get the parameters: The value of 0.01VaR , 0.01ES   and the 95% 
confidence interval (see Table 1), and the Q-Q and distribution maps under these parameters 
(Figures 2 and 3). From the graph we can se 0.8u = e th 1ln lnt t tR P P−= − at the extreme value 
distribution effectively fits our sample distribution, and only a few exceptions occur. And there is no 
significant difference in the fitting effect between 0.8u =  and 0.9u = . For this reason, we only 
give the graph when 0.9u = . 

Table 1 Maximum likelihood estimation of parameters and 95% confidence interval 
  369uN =  0.9u =  287uN =  
 ξ̂  σ̂  0.01VaR  0.01ES  ξ̂  σ̂  0.01VaR  0.01ES  

Lower 0.15 0.33 1.82 2.46 0.16 0.32 1.81 2.46 
estimated 0.229 0.367 1.967 2.791 0.254 0.373 1.958 2.818 

Upper 0.34 0.42 2.15 3.39 0.38 0.43 2.14 3.50 
Interval 0.19 0.09 0.33 0.93 0.16 0.11 0.23 1.04 

 
Fig.2. Q-Q diagram when 0.8u = and 0.9u =  
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Fig.3. Comparison of extreme value distribution and empirical distribution when 0.8u = and 0.9u =  

For the estimation of ξ̂ , Embrechets believes that the financial sequence 1α ξ=  ranges from 3 
to 4, and the [3,4]  we calculate here hardly falls within the area of ξ̂ . This is mainly because we 
have filtered the financial sequence with the ARMA-(Asymmetric) GARCH model, and the 
resulting sequence tz  has eliminated the spikes and tails to some extent, making the value 
estimated by ξ̂  smaller, which is in line with the conclusion of Embrechets. Not contradictory. 

In addition, in the Q-Q diagram, we can see that the fitting effect is very good before the fraction 
of 0.99, and there are individual outliers in the back, which will not affect our estimation of 0.01VaR . 
Because 0.01VaR  only cares about the distribution before the 0.99 is divided into numbers, and is not 
affected by the distribution after the 0.99 is divided into numbers. However, the estimation of 

0.01VaR  is affected by the distribution after the 0.99 is divided into numbers, so this will cause a 
certain error in the estimation of 0.01VaR . This is one of the reasons why we see in Table 1 that the 
95% estimation interval of 0.01VaR  is significantly wider than the 95% estimation interval of 0.01VaR . 

We find that the estimated 0.01VaR  and 0.01ES  of the POT model are significantly smaller than 
the unadjusted estimates. This is because China's stock market was in its infancy between 2002 and 
2004. The supervision was not strong enough, and the market volatility was relatively large. The 
unadjusted over-return income mainly occurred before 2005 and did not take into account in 2006. 
After the securities market is further standardized, the stock market over-return fluctuations are 
reduced, and 0.01VaR  and 0.01ES  should be adjusted accordingly. The data-adjusted extreme value 
forecast can effectively consider the impact of this factor, making the future It is estimated that 
more consideration is given to the current market risks, and it is more accurate to estimate the 
current risks of the market. 

5. Conclusion 
In risk management, a reasonable assumption of the distribution of returns is a prerequisite for 

the correct measurement of risk. However, the existing distribution, especially the widely used 
normal distribution, has a large gap with the actual financial income distribution. The POT model of 
extremum theory only considers the tail of the distribution, rather than modeling the whole 
distribution, which avoids the problem of distribution hypothesis; and the extreme value theory can 
accurately describe the quantile of the tail of the distribution, which is more helpful for processing. 
Our test results also show that the extreme value theory can accurately measure VaR and ES. The 

452



 

empirical test shows that the POT model can effectively improve the accuracy of extreme risk 
prediction, and the model is effective. 
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